The Redevelopment of Scott Base Our Approach To Commercial Risk Management

Antarctica

New Zealand

Simon Shelton Senior Project Manager 26 May 2021

Overview

• Summary of Scott Base Redevelopment (SBR) project

- Risk Management Fundamentals for SBR
- Complex Risk Management
- Scalability

Commercial Risk Allocation

Design of the new base

Construction and logistics methodology

Build the entire base in New Zealand and ship to Antarctica in large modular sections

.. ..

Building and transporting the new base

Benefits

- Reduces health and safety risks of building in Antarctica
- ✓ Reduces number of construction workers on site at Scott Base
- ✓ Allows construction continue year round in normal NZ conditions
- ✓ Allows full commissioning of buildings prior to shipping
- ✓ Allows opportunities to test and train staff on new base operations in New Zealand

Temporary operations during construction

- Temporary base will be required to continue New Zealand's science program and operations throughout the construction phase.
- The existing base will be utilised as much as possible to reduce costs, minimise health and safety risks, and limit infrastructure required.
- Summer and winter operations; summer construction (24hrs)
- Ice shelf options considered but less cost effective.

7

Proposed windfarm upgrade

- The three wind turbines supplying Scott Base and McMurdo Station will come to the end of their design life in 2030 and will need to be replaced.
- The new base will be larger than the existing one and has a higher renewable energy goal.
- We are proposing to install four new larger turbines.
- Solar panels may also be added on the sides of the three buildings.
- We are proposing to provide 97% renewable energy to the new base.

10/06/2021

Current Project Schedule

Coordinated Risk Management

Vs

Requires Commitment (time and money)

If you don't invest in risk management, it doesn't matter what business you're in, it's a risky business.

— Gary Cohn —

Standards – Consistent Approach

Standards – Consistent Approach

SBR Project Risk Management Framework

Risk Management Methodology

AS/NZS ISO 31000 : 2009

Issues vs Risk

Risk

A risk is an uncertain event or condition that, if it occurs, has a negative impact on a project's objectives.

Issue

An issue is an unplanned event that has happened or condition that has negative consequences for a project, **including risk events that eventuate.**

SBR Project Risk Identification Risk Identification Guiding Questions:

- 1. Event: What is the event that could happen?
- 2. Cause: What is the identified event caused by?
- **3. Result:** What is the result of this event occurring?

Consistent approach

			Risk / Opportunity Description	\frown		Project	Impact	Raw R	isk / Opportu	inity	Corporate	
	ID T	Event	Cause	Result	Classification	Stage Impact ▼	Category	Consequence / Benefit 💌	Likelihood	Impac t	Tolerance / Appetite	
	2.6.20	Practical completion	 Not having a clear definition of when practical completion is reached 	 Contract disputes 	Delivery Risk	Stage 5	Schedule	Moderate	Possible	High	Cautious (limited	• [
		delayed	Insufficient	• Delays			Impact, Cost				tolerance)	acl
				 Additional cost 			Impact					arr
				 Low Risk 								An
												• •
												dis
												•T
												sta
Ī	2.6.21	Delay in starting site	Delay in approving certain documents (SSSP and environmental	 Schedule delays 	Delivery Risk	Stage 4	Schedule	Major	Possible	Critical	Risk Averse (low	• E
		works	management plan)				Impact				tolerance)	del
			 Lack of sufficient construction management planning 									toı
												do
												• E

Risk vs Uncertainty

Risk

- Risks are potential events which could either happen or not (with less than 100% probabilities) – discrete events.
- Risk events impact (minor, major or catastrophe) and frequencies (one-off, multi one-off, unlimited) throughout the project lifecycle varies depending on the characteristics of individual risk.
- While it is very unlikely that all risks identified in the risk register will eventuate, all risks combined will be analysed using statistical probability calculation (Monte Carlo) in order to come up with just enough contingency allowance (risks reserve) for the overall project (otherwise we might end up with too much surplus of money at the end of the project).

Risk vs Uncertainty

Uncertainty

- Uncertainties are certain events with uncertain impact magnitudes (with 100% probabilities) - known unknowns.
- The impact of uncertainty will be assessed using impact ranges (3-point) estimate and determine the values depending on our appetite to risks as an organisation (P50, P80 or P90 estimates).
- The sum of simulated 3-points estimate (Monte Carlo simulation) will be adopted as contingency allowance (contingency reserve) to cover the uncertainties in the estimates.

Quantitative vs Quantitative Risk Analysis

- Subjective
 assessment
- Assessing individual risks descriptively to establish risks mitigation strategy

- Objective analysis
- Analysing combined risks effects by performing statistical calculation to predict likely outcome.

20

Quantitative Risk Analysis (QRA)

Project Contingency

• The sum of risks reserve (discrete risks) and contingency reserve (uncertainties) will be adopted as the project contingency sum for the overall project.

QRA – Real World Example

Discrete Risks - Risk Reserve

		Qua	lita	tiv	e			C	Qua	n	titat	ive			
Risk	Risk Description Current Risk		rent Risk			Frequency					Co	Cost Impact Ranges			Exposure (Simulated
U	Event	Consequence	Likelihood	Impact	Туре	Ν	Mean	Probability	Distribu	tion	Optimistic	Most Likely	Pessimistic	Distribution	Value)
1.1.2 F	Poor IT system to support virtual team	Minor	Rare	Low	One-off			5%	Bernoulli	0	\$30,000	\$75,000	\$150,000	80,515.05	\$0
1.2.2	Design exceeding the target budget	Moderate	Unlikely	Medium	One-off			30%	Bernoulli	0	\$0	\$500,000	\$1,000,000	500,000.00	\$0
1.3.1	Scope creep	Moderate	Unlikely	Medium	Multi one-off	2		30%	Binomial	1	\$30,000	\$150,000	\$300,000	155,512.64	\$93,69
1.3.2	Aultiple variation due internal	Moderate	Pussible	High	Multi one-off	2		50%	Binomial	1	\$30,000	\$75.000	\$150,000	80,515.05	\$80,75
1.4.9	Structural Failure	Major	nu e	High	Multi state			50%	Bernoulli	1	\$100,000	\$2 0,000	\$500,000	\$268,527	
								20%	Bernoulli	0	\$500,000	\$1,000,000	\$3,000,000	\$1,284,274	
								5%	Bernoulli	0	000 000 000	\$5,000,000	\$15,000,000	\$6,534,939	\$268,52
1.5.8 I	naccurate estimates of break by	Moderate	Possible	High	One-off			50%	Bernoulli		\$10,000	\$30,000	\$50,000	30,000.00	\$30,000
2.2.6	Delay in making key design to islons	Major	Rare	High	Multi one-off	3		10%	Binomial	0	\$0	\$30,000	\$100,000	37,362.69	\$11,23
2.2.10	Management overrice	Moderate	Unlikely	Medium	Multi one-off	1		30%	Binomia	0	\$0	\$150,000	\$300,000	150,000.00	\$45,29
2.2.11	Changing design decisions	Moderate	Unlikely	Medium	Multi one-off	2		30%	Bin mal	1	\$30,000	\$60,000	\$120,000	65,518.17	\$39,369
2.2.14	Systemic failure	Moderate	Possible	High	Multi one-off	1		50%	Binomial	1	\$0	\$50,000	\$100,000	50,000.00	\$25,15
4.2.1 (Contracting dispute(s)	Moderate	Unlikely	Medium	Multi one-off	1		30%	Binomial	0	\$100,000	\$300,000	\$500,000	300,000.00	\$90,39
4.5.10 E	Event flight delays	Minor	Possible	Medium	Multi one-off	2		50%	Binomial	1	\$10,000	\$30,000	\$50,000	30,000.00	\$30,12
5.2.3	Changes to government policies	Minor	Unlikely	Low	One-off			30%	Bernoulli	0	\$100,000	\$300,000	\$500,000	300,000.00	\$0
5.3.1	Adverse weather	Major	Likely	Critical	Unlimited		1		Poisson	1	\$300,000	\$500,000	\$1,200,000	594,213.52	\$592,44
*	Time (delay) cost risk to be develope	in the schedule	e risk model.				·			·	\$4,240,000	\$8,500,000	\$23,020,000	Output:	\$1,307,000

Risk Sensitivity Analysis

Integrated Schedule-Cost Risk Analysis Output

The main benefit of calculating the costs with the same assumptions that drive schedule dates is that **cost uncertainty is determined by uncertain time (delays)**.

Risk Breakdown Structure

25

Scalability – ensure it's fit for purpose

Risks

Risks – list top 5 risks to the project ranked in order of criticality to project this month

Risk name, description and impact	Key Controls	Owner	Consequence	Likelihood	Rating	Status
Describe risk and impact	What action are you taking to	Who		Rare,	Ranked in	Green,
to project derivery	CONTROL THIS HISK?			possible	0/06/1-5	red
Constrained funding	XXXXX	PSG	XXXX	Possible	1	Red
(ref 3.1.2. 3.1.3. 4.3.1)						
Late requirements	XXXXXXX	TB PM	Schedule	Possible	2	
change – SBR delay,		PSG	shlays,			Orange
design cost overrun.			esign cost			Orange
(ref 1.2.1)			escalation			
Temp. Base not	Robust planning with float.	IB DM	Budget	Possible	3	
delivered when	Confirm final budget/ 💦 🔨		overrun, delay			Red
required – SBR delay	occupant numbers.		SBR			Reu
(ref 2.2.3, 2.6.1, 2.6.2)	Robust Scope Control.					
Slow finalisation	Early SLT engagement	TB PM	Design cost	Possible	4	
xxxxxx – SBR delay	Fast track production of file		escalation/			Orange
(ref TBC)	note/PSG paper		delay SBR			
Covid related supply	XXXXXXX	TB PM	Budget	Possible	5	
chain issues – SBR			overrun, delay			Oranho
delay, cost overrun			SBR			orange
(ref 4.2.2)						

Commercial Risk Allocation

Commercial Risk Allocation

The purpose of this action is to consider **how the risks may be balanced between the public sector purchaser and the private sector supplier(s)**, in the design, build, funding and operational phases of delivery.

The governing principle is that **specific risks should be allocated to the party best able to manage it.** The intention is to optimise the allocation and sharing of risk, not to maximise the number of risks to be transferred to potential service providers.

A fair and transparent approach to risk transfer is required. This includes:

- Specific risks should be allocated to the party best able to manage it, subject to the risk
 premium.
- An understanding of the balance of risk between designer and contractor
- The value of risk transfer and acceptance that is must be budgeted for and priced
- Risk transfer should be fully assessed and signed-off at the appropriate executive level
- The adoption of an appropriate form of contract.

Commercial Risk Allocation

Scott Base Redevelopment Project **Commercial Risk Allocation Plan**

2 Purpose

2.1 Principles of risk allocation

The principles of risk allocation are intended to be objective 'rules of thumb' with the interest of maximizing the efficiency of resources within project by all of the participants. The dangers of shortsighted risk transfer or inadvertent risk retention can jeopardize the success of any project, including cost and time implications for the Client and Contractor.

2.2 Assigning risks

Once risks are identified, each risk must be clearly assigned to the respective parties to the contract who are best positioned to control or mitigate the risk. To do so, each party's role in the project must be clearly defined; only then can the individual risks be properly allocated. It is essential that any exposure to risk must be commensurate with the benefits derived from participation in the project, and the participant who can best control the outcome of an event or task be assigned responsibility for any associated risks.

2.3 Allocation of unavoidable risks

The Contractor should bear all risks over which they can exercise reasonable control. These include all matters relating to selection of construction methods, equipment and execution of work, except where this control is impaired by the action of third parties.

Truly unpredictable risks (natural disasters, force majeure, etc) are properly allocated to insurers. Antarctica New Zealand may in some cases choose to be a self-insurer, particularly as Antarctica New Zealand are in the position to understand the local natural environment in greater detail than any insurer could.

In the area of third-party effects, risks should be allocated to those best able to deal with the third party. This principle would assign to Antarctica New Zealand the risks related to government agency regulations for example. Risks associated with labour and subcontractor agreements and disputes should be assigned to the Main Contractor.

The allocation of risks due to general economic factors (material, labour price escalation, foreign exchange rates, etc) will need to be considered in the construction contracts due to the long construction programme. The client may assume part of these risks through rise and fall of costs clauses, and other relief provisions.

The general guidelines for risk sharing include:

- 1. If a risk is imposed upon a party, an opportunity for reward to the party should exist for properly
- dealing with the risk.
- 2. A risk should be allocated to the party which is in the best position to control.
- 3. A risk should be allocated to the party in whose hands the efficiency of the system is best promoted.
- 4. A risk should be allocated to the party which is best able to manage it financially.
- 5. Steps should be taken to assure that risks are actually allocated as intended.
- Allocate sufficient risk to participants to motivate them to perform properly. Consider the degree of control over the risk to be allocated when assigning risk responsibility.
- 8. Consider the participant's risk appetite.
- 9. Consider the participants' ability to control risks allocated to them.
- 10. The client is likely to retain risks of a national or international character, such as foreign currency devaluation or trade sanctions.
- 11. Share mutually dependent risks on a preselected, rational basis, rather than overlapping them. This action will prevent conflict and inadvertent assumptions of loss because of inability to determine fault.

Following allocation, all parties involved must continue the risk assessment process and work through risk mitigation measures.

SBR - Commercial Risk Allocation Rev D

30

Commercial Risk Allocation

3 Draft Commercial Risk Allocation

Catagory	Pick	Risk Allo	cation			Comments		
Category	Niak	Client / Ant NZ	ent / Consultants / Logistics Main nt NZ Designers Contractor Contractor			ommenta		
External / Force Majeure	Force majeure event results in additional cost and time.	100%	0%	0%	0%	Definition of force majeure to be clearly defined and agreed due to severity of regular weather events.		
External / Weather	Weather event results in construction delays over one month	100%	0%	0%	0%	The Main Contractor needs to be aware of the working conditions at Scott Base and plan accordingly. Project schedule contingency to be allocated appropriately.		
External / Economic	Exchange rate movements and cost increases results in changes to the cost of the project.	100%	0%	0%	0%	Review potential construction cash flow against project schedule and timing of funding availability. Optimal procurement options to be generated for on-site and off-site work, particularly those impacted by foreign exchange.		
Technical / Scope	The project scope and associated budget as set by Antarctica New Zealand are exceeded by the designers (i.e. designers fail to design to budget) caused by scope creep resulting in adverse value management outcomes or cost increases.	33%	33%	0°°	33%	Designers to design to scope and budget. Early Contractor Involvement (ECI) contractor input for cost estimates.		
Technical / Scope	Design phase project scope changes caused by Antarctica New Zealand instructions results in adverse value management outcomes or cost increases.	100%	0%	0%	0%	Consultants to advise Antarctica New Zealand of the implications of scope change. Project Controls Manager to review and manage all change requests.		
External / Economic	Poor business case caused by incomplete or inaccurate content results in insufficient funding.	100%	0%	0%	0%			
Technical / Design	Poorly coordinated design and documentation caused by Consultant non-performance results in cost and schedule increases.	0	100%	0%	0%	Allow specific coordination activities in design schedule. Ensure Design Lead consultant owns design coordination activities. Antarctica New Zealand to consider contract management across Consultants.		
Technical / Design	User requirements not incorporated into the design and documentation (i.e. brief not met) caused by Consultant non- performance results in expectations not being met over the life of the project and project outcome not fit for purpose.	0%	100%	0%	0%	Ensure design brief is clear and is updated to meet evolving project requirements. Allow specific coordination activities in design schedule. Ensure Design Lead consultant owns design coordination activities.		
Commercial / Procurement	Building materials, equipment and/or labour not available when needed, resulting in a delay and possible cost increases to the project. Caused by late delivery / logistics issues Caused by poor planning/procurement	100% 0%	0% 0%	0% 0%	0% 100%	The contractor is responsible for ensuring that materials, equipment and/or labour are at the appropriate staging points (port, airport, etc). Antarctica New Zealand responsible for delays that occur in transit (breakdowns, weather, etc).		

31

Group Exercise

Add header

	N3		Risk All	ocation					
Subject	Risk	Client	Designers	rs PM Main Contractor		Possible Management Mechanisms	Comments		
Design	Lump Sum Tendered Contract (off detailed design) Poorly coordinated design caused by consultants results in cost and schedule increases								

Group Exercise

			Risk Allo	cation					
Subject	Risk	Client	Designers	PM	Contracto	Possible Management Mechanisms	Comments		
	Design & Build Contract (off written brief and concept design) Poorly coordinated design caused by contractor results in cost and schedule increases				-				
Design	Design & Build Contract (off Developed Design and specifications) Poorly coordinated design caused by original consultants results in cost and schedule increases								

Group Exercise

			Risk Al	location	1				
Subject	Risk	Client	Designers	PM	Main Contractor	Possible Management Mechanisms	Comments		
Site Condition s	Site conditions differ from prior investigations. This results in additional time and cost. Caused by varying: 1.Site contamination 2.Unknown/unidentif ied services in the ground								
H&S	Fatality or serious harm caused by H&S incident on site results in project delays, possible additional costs, reputational damage and potential prosecution for an entity.								